Normalization of Sequential Top-Down Tree-to-Word Transducers

Gregoire Laurence joint work with Aurelien Lemay, Joachim Niehren, Slawek Staworko, and Marc Tommasi

> Mostrare Project INRIA Lille - Nord Europe University of Lille

> > May 27, 2011

XSLT

<xsl:output method="xml"/>

<xsl:output method="text"/>

XSLT

<xsl:output method="xml"/>

<xsl:output method="text"/>

• Tree-to-word transformations

- concatenation on the output
- XSLT is TURING COMPLET

XSLT inspired framework

```
<<s::template mode="q" match="label">
<!-- binary symbol -->
left
<apply-child rank=1 mode="p" />
middle
<apply-child rank=2 mode="p" />
right
</xsi:template>
```


- ranked input
- finite states machine (template = state)
- deterministic (equivalence undecidable for non det string transducers [Griffiths 68])

Related work

Top-down tree transducers [Maneth et Al. PODS 2010]

- Tree-to-tree transducer
- Learning results
- Normalization algorithm
- Allow copy

Visibly pushdown transducers [Raskin et Al. ALP 2008]

- Tree-to-words transducer
- Works on stream of events

Why the normalization problem?

Learning

Grammatical inference

Classic problem

- String transducers [Choffrut, 1978]
- Top-down transducers [Engelfriet et Al. JCSS 2009]
- Bottom-up transducers [Friese et Al. DLT 2010]
- Macro tree transducers (open problem)

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

5 Minimization

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

3 Normalization

6 Complexity bounds

5 Minimization

Example of Transformation

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once
- Output concatenation

•
$$T(f(t_1, t_2)) = b \cdot T'(t_1) \cdot b \cdot T'(t_2) \cdot b$$

$$f(g^n(a),g^m(a))\mapsto b\cdot a^n\cdot b\cdot a^m\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once
- Output concatenation

•
$$T(f(t_1, t_2)) = b \cdot T'(t_1) \cdot b \cdot T'(t_2) \cdot b$$

•
$$T'(g(t_1)) = a \cdot T'(t_1)$$

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once
- Output concatenation

•
$$T(f(t_1, t_2)) = b \cdot T'(t_1) \cdot b \cdot T'(t_2) \cdot b$$

•
$$T'(g(t_1)) = a \cdot T'(t_1)$$

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once
- Output concatenation

•
$$T(f(t_1, t_2)) = b \cdot T'(t_1) \cdot b \cdot T'(t_2) \cdot b$$

•
$$T'(g(t_1)) = a \cdot T'(t_1)$$

$$f(g^n(a),g^m(a))\mapsto b\cdot a^n\cdot b\cdot a^m\cdot b$$

- Top Down tree traversal
- Deterministic
- Each node visited exactly once
- Output concatenation
- $q(f(x_1,x_2)) = b \cdot q'(x_1) \cdot b \cdot q'(x_2) \cdot b$
- $q'(g(x_1)) = a \cdot q'(x_1)$
- **q**'(a) = ε

$$f(g^n(a),g^m(a))\mapsto b\cdot a^n\cdot b\cdot a^m\cdot b$$

Expressivity

Input domain

- Regular tree language
- Ranked
- Path-closed (recognizable by deterministic top-down automata)

Output

CFL

Transformation

• no reordering

no copy

Problem

What's the most adapted normal form for such machine? Does every STWs can be normalized in such form? What's the cost of this operation?

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

3 Normalization

6 Complexity bounds

5 Minimization

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

 $q_0(f(x_1, x_2)) \to b \cdot q_1(x_1) \cdot b \cdot q_1(x_2) \cdot b$ $q_1(g(x_1)) \to a \cdot q_1(x_1)$ $q_1(a) \to \varepsilon$

$$q_0(f(x_1, x_2)) \rightarrow q_2(x_1) \cdot b \cdot q_1(x_2)$$

$$q_1(g(x_1)) \rightarrow a \cdot q_1(x_1)$$

$$q_2(g(x_1)) \rightarrow q_2(x_1) \cdot a$$

$$q_1(a) \rightarrow b$$

$$q_2(a) \rightarrow b$$

- as soon as possible
 - top-down
 - left-to-right
- smallest definition

- no clear semantic
- bigger definition

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

$$q_0(f(x_1, x_2)) \to b \cdot q_1(x_1) \cdot b \cdot q_1(x_2) \cdot b$$
$$q_1(g(x_1)) \to a \cdot q_1(x_1)$$
$$q_1(a) \to \varepsilon$$

$$q_0(f(x_1, x_2)) \rightarrow b \cdot q_1(x_1) \cdot q_1(x_2)$$
$$q_1(g(x_1)) \rightarrow a \cdot q_1(x_1)$$
$$q_1(a) \rightarrow b$$

$$f(g^{n}(a),g^{m}(a))\mapsto b\cdot a^{n}\cdot b\cdot a^{m}\cdot b$$

• as soon as possible

- top-down
- left-to-right
- same size

earliest wrt output (VPT)

- as soon as possible
 - depth first
- same size

Infinite number of states

Reverse Transformation

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

5 Minimization

Push up output annotations

$$f(g^m(a),g^n(a))\mapsto b\cdot(a)^m\cdot b\cdot(a)^n\cdot b$$

$$q_0(f(x_1, x_2)) \rightarrow q_1(x_1) \cdot b \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow q_1(x_1) \cdot a$$

$$q_1(a) \rightarrow b$$

$$q_2(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$q_2(a) \rightarrow b$$

Output as soon as possible following the top-down order

Push up output annotations

$$f(g^{m}(a),g^{n}(a))\mapsto \mathbf{b}\cdot(a)^{m}\cdot\mathbf{b}\cdot(a)^{n}\cdot\mathbf{b}$$

$$q_0(f(x_1, x_2)) \rightarrow q_1(x_1) \cdot b \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow q_1(x_1) \cdot a$$

$$q_1(a) \rightarrow b$$

$$q_2(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$q_2(a) \rightarrow b$$

Output as soon as possible following the top-down order

Push up output annotations

$$f(g^m(a),g^n(a))\mapsto b\cdot(a)^m\cdot b\cdot(a)^n\cdot b$$

$$q_0(f(x_1, x_2)) \rightarrow \mathbf{b} \cdot q_1(x_1) \cdot \mathbf{b} \cdot q_2(x_2) \cdot \mathbf{b}$$

$$q_1(g(x_1)) \rightarrow q_1(x_1) \cdot \mathbf{a}$$

$$q_1(\mathbf{a}) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow \mathbf{a} \cdot q_2(x_1)$$

$$q_2(\mathbf{a}) \rightarrow \varepsilon$$

Output as soon as possible following the top-down order

Push left output annotations

$$f(g^m(a), g^n(a)) \mapsto b \cdot (a)^m \cdot b \cdot (a)^n \cdot b$$

$$q_0(f(x_1, x_2)) \rightarrow b \cdot q_1(x_1) \cdot b \cdot q_2(x_2) \cdot b$$

$$q_1(g(x_1)) \rightarrow q_1(x_1) \cdot a$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$q_2(a) \rightarrow \varepsilon$$

$$f(g^m(a), g^n(a)) \mapsto b \cdot (a)^m \cdot b \cdot (a)^n \cdot b$$

$$q_0(f(x_1, x_2)) \rightarrow b \cdot q_3(x_1) \cdot b \cdot q_2(x_2) \cdot b$$

$$q_1(g(x_1)) \rightarrow q_1(x_1) \cdot a$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$q_2(a) \rightarrow \varepsilon$$

$$q_3(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$f(g^m(a), g^n(a)) \mapsto b \cdot (a)^m \cdot b \cdot (a)^n \cdot b$$

b

$$q_0(f(x_1, x_2)) \rightarrow b \cdot q_3(x_1) \cdot b \cdot q_2(x_2) \cdot q_1(g(x_1)) \rightarrow q_1(x_1) \cdot a$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow a \cdot q_2(x_1)$$

$$q_2(a) \rightarrow \varepsilon$$

$$q_3(g(x_1)) \rightarrow a \cdot q_3(x_1)$$

$$q_3(a) \rightarrow \varepsilon$$

Push left output annotations

$$f(g^m(a), g^n(a)) \mapsto b \cdot (a)^m \cdot b \cdot (a)^n \cdot b$$

$$q_0(f(x_1, x_2)) \to b \cdot q_2(x_1) \cdot b \cdot q_2(x_2) \cdot b$$
$$q_2(g(x_1)) \to a \cdot q_2(x_1)$$
$$q_2(a) \to \varepsilon$$

$$f(g^m(a),g^n(a))\mapsto (ab)^m\cdot ac\cdot (ab)^n$$

$$q_0(f(x_1, x_2)) \rightarrow q_1(x_1) \cdot a \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow ab \cdot q_1(x_1)$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow q_2(x_1) \cdot ab$$

$$q_2(a) \rightarrow c$$

Applying an operation can lead to:

$$f(g^m(a),g^n(a)) \mapsto a \cdot (ba)^m \cdot c \cdot (ab)^n$$

$$q_0(f(x_1, x_2)) \rightarrow q_1(x_1) \cdot a \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow ab \cdot q_1(x_1)$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow q_2(x_1) \cdot ab$$

$$q_2(a) \rightarrow c$$

Applying an operation can lead to:

$$f(g^{m}(a),g^{n}(a))\mapsto a\cdot(ba)^{m}\cdot c\cdot(ab)^{n}$$

$$q_0(f(x_1, x_2)) \rightarrow \mathbf{a} \cdot q_1(x_1) \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow \mathbf{b} \mathbf{a} \cdot q_1(x_1)$$

$$q_1(\mathbf{a}) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow q_2(x_1) \cdot \mathbf{a} \mathbf{b}$$

$$q_2(\mathbf{a}) \rightarrow c$$

Applying an operation can lead to:

modify other output annotations

$$f(g^m(a), g^n(a)) \mapsto a \cdot (ba)^m \cdot c \cdot (ab)^n$$

$$q_0(f(x_1, x_2)) \rightarrow a \cdot q_1(x_1) \cdot c \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow ba \cdot q_1(x_1)$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow q_2(x_1) \cdot ab$$

$$q_2(a) \rightarrow \varepsilon$$

Applying an operation can lead to:

modify other output annotations

$$f(g^m(a), g^n(a)) \mapsto a \cdot (ba)^m \cdot c \cdot (ab)^n$$

$$q_0(f(x_1, x_2)) \rightarrow a \cdot q_1(x_1) \cdot c \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow ba \cdot q_1(x_1)$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow ab \cdot q_2(x_1)$$

$$q_2(a) \rightarrow \varepsilon$$

Applying an operation can lead to:

- modify other output annotations
- reapply other operations

$$f(g^m(a), g^n(a)) \mapsto a \cdot (ba)^m \cdot c \cdot (ab)^n$$

$$q_0(f(x_1, x_2)) \rightarrow a \cdot q_1(x_1) \cdot c \cdot q_2(x_2)$$

$$q_1(g(x_1)) \rightarrow ba \cdot q_1(x_1)$$

$$q_1(a) \rightarrow \varepsilon$$

$$q_2(g(x_1)) \rightarrow ab \cdot q_2(x_1)$$

$$q_2(a) \rightarrow \varepsilon$$

Applying an operation can lead to:

- modify other output annotations
- reapply other operations

Normalization results

Theorem

For an STW M, we can construct an equivalent earliest STW M' in time polynomial in the size of M'.

M' size is at most doubly-exponential in the size of M.

Proof techniques

- Constructive
- Combinatory on words

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

3 Normalization

5 Minimization

Explosion of the size of rules

- input: a perfect (well-balanced) binary tree of height n
- output: concatenation of all leaves, erasing inner nodes

Explosion of the size of rules

- input: a perfect (well-balanced) binary tree of height n
- output: concatenation of all leaves, erasing inner nodes

For 0 < i < n: $q_0(f(x_1, x_2)) \rightarrow a^{2^n} \cdot q_1(x_1) \cdot q_1(x_2)$ $q_i(f(x_1, x_2)) \rightarrow q_{i+1}(x_1) \cdot q_{i+1}(x_2)$ $q_n(a) \rightarrow \varepsilon$

Size of the first rule is exponential in the size of the initial transducer

Explosion of the number of states

 input: (0|1)ⁿ = x binary encoding followed by a or b
 output: start always by a^x

For $0 \le i < n$:

$$q_i(0(x_1)) \to q_{i+1}(x_1)$$
$$q_i(1(x_1)) \to q_{i+1}(x_1) \cdot a^{2^i}$$
$$q_n(a) \to \varepsilon$$
$$q_n(b) \to a^{2^n} \cdot \#$$

n states

Explosion of the number of states

- input:
 (0|1)ⁿ = x binary encoding followed by a or b
- **output**: start always by a^x

For $0 \le i < n$:

$$q_i^k(0(x_1)) \to q_{i+1}^k(x_1)$$

$$q_i^k(1(x_1)) \to a^{2^i} \cdot q_{i+1}^{k+2^i}(x_1)$$

$$q_n^k(a) \to \varepsilon$$

$$q_n^k(b) \to a^{2^n-k} \cdot \# \cdot a^k$$

 $\sum_{i=0}^{n} 2^{i}$ states

Obtained number of states is exponential on the number of the initial transducer states

Outline

Sequential Top-Down Tree-to-Word Transducers

2 Earliest STWs

3 Normalization

Omplexity bounds

5 Minimization

Minimization

Theorem

Minimization of earliest STWs is in PTIME.

Lemma

Between two earliest STWs, states can be duplicated but keep sames rules.

The equivalence test on earliest STWs is in PTIME [Staworko et Al. FCT 2009]

Lemma

Minimization of arbitrary STWs is NP-complete.

Conclusion

Result

We have defined the class of STW :

- nice expressivity
- with good properties
 - decidable equivalence in PTIME
 - normalization algorithm

Perspectives

- learning algorithm
- allow swapping